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ABSTRACT: The performance of the NOAA High Resolution Rapid Refresh (HRRR) model for

capturing low-level winds near a wind energy production site during summer 2019 is evaluated.

This study catalogues the ability of HRRR to predict boundary layer dynamics relevant to wind

energy interests over complex terrain, which has presented challenges for weather and energy

forecasting. Performance is evaluated by comparing HRRR output to wind-profiling Doppler

lidars at Lawrence Livermore National Laboratory Site 300. HRRR captured the diurnal profile of

horizontal winds in the observed 150 m layer, despite strong underpredictions (∼ 4 ms−1) during

evening and nighttime hours. These underpredictions may be a result of local speed-up flows

observed by the lidars, which were unresolved in HRRR due to their small spatial extent. HRRR

bias magnitude relative to observations was found to be minimal during days with synoptic-scale

troughs and strong 850 hPa geopotential gradients, while bias magnitude was maximal during days

with synoptic ridging and weak 850 hPa geopotential gradients. To translate wind speed predictions

to energy forecasting, generic turbine models were used to estimate power generation for turbines

characteristic of the nearby Altamont Pass Wind Resource Area. Results show that HRRR-

based energy estimates predicted daytime power generation adequately relative to lidar-based

estimates with an 18-hour lead time (bias magnitude < 0.4MW from 09:00-14:00 local time), but

overpredicted power during the rest of the diurnal cycle (bias > 1MW). These results demonstrate

conditions under which HRRR performs well for wind energy applications in complex terrain,

while highlighting biases that require further investigation to support usage of a high-resolution

model for wind energy forecasts.
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SIGNIFICANCE STATEMENT: Accurate prediction of surface winds is essential for forecast-28

ing atmospheric phenomena, such as boundary layer dynamics and surface-atmosphere energy29

exchange, to enable the prediction of operational quantities, such as wind energy output. However,30

prediction is complicated by complex terrain. To assess prediction accuracy, we evaluate perfor-31

mance of NOAA’s HRRR model against wind speed data in central California using observational32

data from vertically-profiling lidars. This study found that winds at turbine height are accurately33

predicted during the daytime but overpredicted overnight. Additionally, small-scale hill speed-up34

events at sunset were not captured by the model, leading to consistent underprediction of near-35

surface winds. These results have implications for wind energy forecasting in the complex terrain36

of central California, and potentially other areas with similar terrain.37

1. Introduction38

Complex terrain (e.g., hills, mountains, valleys, ridges, etc.) presents a challenge for numerical39

weather prediction (NWP). The challenge is particularly significant in the atmospheric boundary40

layer, as parameterized surface exchange processes and spatiotemporally variable flow patterns41

may be difficult to capture. Moreover, the horizontal resolution of operational NWP models is42

often too coarse to fully resolve local-scale topographical features that influence these processes43

and flow patterns.44

This challenge is relevant beyond the NWP community due to the prevalence of wind turbine45

placement in areas with complex terrain. As wind energy capacity and demand grows (Wiser et al.46

2022), the forecasting of energy output becomes increasingly important for the public and private47

sectors. Prediction of wind energy output is useful for planning and operational purposes alike,48

and often requires forecasting lead times of a day or more for many stakeholders reliant on wind49

energy. Additionally, the high sensitivity of wind turbine production to changes in wind speed50

and direction make accurate and precise predictions critical for energy forecasts. However, such51

predictions are complicated by the highly variable nature of boundary layer dynamics over complex52

terrain (Olson et al. 2019).53

The modeling of boundary layer flows over complex terrain for wind energy applications has54

been extensively studied in the literature. As far back as Sisterson and Frenzen (1978) and Liu55

and Yocke (1980), the importance of the numerical modeling of boundary layer flows for wind56
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energy forecasting has been recognized by the meteorological community. Numerous studies57

examined the ability to forecast winds in the boundary layer over a variety of different terrains58

using models across scales, ranging from mesoscale models (Carvalho et al. 2012; Cheng et al.59

2017; Heppelmann et al. 2017) to large-eddy simulations (Bauweraerts and Meyers 2019; Mirocha60

et al. 2014; Santoni et al. 2018) to wind forecasting models (e.g., statistical, deep-learning, etc.)61

(Kariniotakis et al. 1996; Li et al. 2022; Sideratos and Hatziargyriou 2007). Despite these and62

other efforts, sources of forecast accuracy are not fully understood, due in part to subgrid-scale63

processes and the lack of long-term observational data from the surface through the boundary layer64

(Pichugina et al. 2019).65

A major step forward in diagnosing model errors and guiding model improvements for wind66

forecasting was ushered in by the Wind Forecast Improvement Project field campaigns, WFIP67

and WFIP2 (Olson et al. 2019; Shaw et al. 2019; Wilczak et al. 2015, 2019). WFIP presented a68

significant push by the public and private sectors to improve the accuracy of NWP in forecasting69

wind energy at short lead times (up to 24 h) through improvements to observational data assimilation70

and modeled boundary layer dynamics. WFIP2 marked a shift in mission goals and complexity71

by assessing the ability of NWP models to resolve atmospheric conditions in complex terrain.72

The WFIP2 campaign was based in the northwestern United States and was composed of an 18-73

month observational period with comprehensive profiling of surface and boundary layer processes.74

WFIP2 led to numerous studies on flow dynamics and their representation in NWP models specific75

to areas with complex terrain, such as cold-air pools, gap flows, and mountain waves (Adler et al.76

2021, 2023; Arthur et al. 2022; Bianco et al. 2019; Draxl et al. 2021; Xia et al. 2021). Several77

of these studies focused on the forecasting of boundary layer properties directly relevant to wind78

energy forecasting with the intent of diagnosing operational model errors and verifying model79

modifications relative to observations (Banta et al. 2021; Bianco et al. 2022; Djalalova et al. 2020;80

Pichugina et al. 2019).81

The need to resolve such phenomena has motivated the development of NWP models with82

increasingly higher spatial and temporal resolutions. One such model is the NOAA High-Resolution83

Rapid Refresh (HRRR) (Benjamin et al. 2016), which is an operational NWP model used for short-84

term weather forecasting over the continental United States (CONUS). Due in part to high spatial85

and temporal resolution relative to other operational NWP models, HRRR is widely used for86
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short-term wind and solar energy forecasting applications (Juliano et al. 2022b; Shaw et al. 2019).87

A major goal of the WFIP2 project was to support development of HRRR for improved wind88

predictions over complex terrain (Olson et al. 2019), and various model improvements have since89

been included in experimental HRRR configurations (Adler et al. 2023; Banta et al. 2023; Bianco90

et al. 2019; Pichugina et al. 2020).91

An additional phenomenon that presents modeling challenges in wind energy forecasting are92

speed-up flows (Banta et al. 2021; Clifton et al. 2022; Djalalova et al. 2020; Giebel and Kariniotakis93

2017; Pichugina et al. 2019; Quon et al. 2019; Safaei Pirooz and Flay 2018). Speed-up flows,94

which are characterized as near-surface increases in wind speed over hills and ridges relative to95

neighboring surfaces, are typical features of flows over hills and ridges (Coppin et al. 1994; Lubitz96

and White 2007; Mickle et al. 1988) and are relevant for wind energy applications, such as wind97

farm siting (Hyvärinen et al. 2018; Tian et al. 2013, 2021) and energy output forecasting (Castellani98

et al. 2016; Wagenbrenner et al. 2016; Wharton et al. 2015). Because of their occurrence near the99

surface (among the lowest modeled vertical levels) and non-logarithmic velocity profiles, as well100

as their transient nature over the course of a day, forecasting of these phenomena has presented101

continued challenges for NWP modeling. Given the non-logarithmic shape of speed-up flow wind102

profiles, in which the wind speed decreases with height through a typical turbine rotor layer, NWP103

models are likely to overestimate hub-height wind speeds. This could lead to large overestimates104

of wind energy production. Thus, the goal of this work is to quantify model wind speed bias105

during observed speed-up events to inform future model improvements, especially for wind energy106

applications.107

The present study aims to evaluate HRRR predictions of boundary layer dynamics in a region with108

significant wind energy production that features recurring speed-up flows over complex terrain.109

The analysis focuses on model predictions of local-scale wind profiles, as analysis of localized110

HRRR performance is useful for model evaluation against lidar observations. However, NWP111

models exhibit greater predictive skill at larger spatial scales as their spatiotemporal resolutions112

exceeding those of localized atmospheric phenomena. Therefore, an additional component of this113

analysis explores the connection between synoptic-scale conditions and model performance to114

determine synoptic-scale predictors of localized HRRR performance.115
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The area studied is the Altamont Pass, which is located within the Diablo Range in central116

California. This location is considered due to its importance for wind energy in California as117

well as its proximity to a facility operated by Lawrence Livermore National Laboratory (named118

Site 300), which allows for observations of boundary layer properties in the 0-150 m layer agl119

in which turbines largely operate. This work follows on the observational analysis performed at120

this site by Wharton and Foster (2022) as part of the Hill Flow Study, hereafter referred to as121

HilFlowS (Wharton 2019). As stated in Wharton and Foster (2022), the objective of HilFlowS was122

to supplement the WFIP2 campaign by providing observations in a region with complex terrain123

relevant to wind energy generation outside the spatial domain of the WFIP2 campaign.124

This study is outlined as follows: Section 2 details the site where observations are recorded,125

as well as the data (observational data, HRRR model data, and reanalysis data) and analytical126

methods used for this study. Section 3 provides results from the observational period and an127

evaluation of HRRR model performance relative to observed conditions. Additionally, this section128

investigates the association between site-specific HRRR model performance and synoptic- and129

mesoscale atmospheric conditions (see Section 3d). Afterwards, the utility of HRRR for wind130

energy forecasting is discussed by exploring wind energy forecast accuracy over an 18 h forecast131

horizon relative to observations (see Section 3e). Section 4 provides a summary of the findings, a132

discussion of HRRR performance relevant to boundary layer dynamics and wind energy interests,133

and suggestions for future work.134

2. Site information, data, and methods135

a. Site information136

The area analyzed in the HilFlowS study is located in north-central California to the east of the137

San Francisco Bay, between the California Southern Coast Ranges and the San Joaquin Valley (see138

Figure 1 for a map of the study area). Within this area, relevant sites considered are the Altamont139

Pass Wind Resource Area (APWRA) and Lawrence Livermore National Laboratory Site 300 (Site140

300).141

APWRA spans approximately 202 km2 (≈50,000 acres) along the northern end of the Diablo142

Range, which runs approximately northwest to southeast, and is a significant wind farm region143

in California, with nearly 200 operating turbines and a rated capacity of approximately 264 MW144
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during the time of the HilFlowS observation period (Hoen et al. 2018). For the purposes of this145

study, an important parameter to consider for wind forecasting is median turbine hub height, which146

is 80 m for newer APWRA turbines (Wharton and Foster 2022).147

Site 300 is approximately 10 km southeast of the APWRA along the Diablo Range. The site148

features variable topography composed of hills, several ridges, and valleys. The site is covered149

in grassland of roughly uniform height (less than 1 m) and is largely devoid of trees and shrubs.150

Elevation of terrain within Site 300 ranges from 150 to 500 m above mean sea level (a.m.s.l.), with151

higher terrain immediately to the south and southwest of the site and gentler downsloping terrain152

toward the California Central Valley to the east. Topographical variance is high, with typical153

variations of O(100 m) within 1 km. The slopes of the hills upon which the lidars are mounted154

reach maximum angles of approximately 20◦, although the effective angle is dependent on wind155

direction.156

b. HRRR model dataset157

Forecasts from the operational HRRR [HRRRv3, implemented operationally in 2018 and doc-158

umented in James et al. (2022)] are analyzed and evaluated in this study. The HRRR is nested159

within the domain set by the NOAA Rapid Refresh (Benjamin et al. 2016), with the HRRR spatial160

domain (Δ𝑥 = 3km) covering the continental United States. HRRR is rerun hourly, producing 18 h161

forecasts for most runs, and 48 h forecasts every 6 h (Olson et al. 2019). For results concerning162

boundary layer dynamics in Sections 3a-d, model data from forecast hour 1 are used to evaluate163

the ability of HRRR to resolve dynamics observed at Site 300, as HRRR output at forecast hour164

1 of was found by (Banta et al. 2021) to have minimum bias. For results relevant to wind energy165

forecasting in Section 3e, data from forecast hours 0-18 are used to evaluate the ability of HRRR to166

predict wind energy generation relative to observations. Additional details regarding model setup167

and data assimilation methods can be found in Benjamin et al. (2016).168

For the present analysis, HRRR model grid values were bilinearly interpolated to the observation169

points, following Pichugina et al. (2019). HRRR hybrid-sigma levels were remapped to align with170

the vertical levels at which lidar data was available. To ensure remapped levels are representative171

of the lidar-observed levels, a 5% error tolerance was imposed between HRRR hybrid-sigma172

levels and lidar levels, with any remapping errors exceeding the tolerance being rejected. For173
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the analysis of the lowest 150 m, the lowest 10 to 12 hybrid-sigma levels were used depending on174

surface pressure. Given the height variability on hybrid-sigma coordinate levels due to atmospheric175

conditions, the vertical grid spacing of the hybrid-sigma levels ranged from 2 to 5 m within the176

first 3 hybrid-sigma levels, 5 to 10 m for the following 5 levels, and 10 to 25 m for the remaining177

levels. In general, vertical resolution was on the order of that for the Doppler lidars used (∼10 m).178

Further details regarding instrumentation are provided in Section 2c.179

c. Observational instrumentation and data availability180

Data analyzed for this study were collected by a pair of Doppler lidars located on parallel181

ridgelines within Site 300, with a meteorological tower located on a smaller, third ridge. The182

instruments are aligned such that they are directly in line with one another when the winds are from183

the southwest or northeast. The two vertically-profiling Doppler lidars (ZephIR 300, ZXLidars,184

United Kingdom) were used for observations of boundary layer winds at several vertical levels.185

The lidars were deployed at two hilltops (western observation point, WOP, and eastern observation186

point, EOP) within the Site 300 facility (see Figure 1). Although the distance between WOP and187

EOP is approximately 1 km, the observation sites correspond to neighboring HRRR grid cells as188

shown in the figure. The lidars were operated in a velocity azimuth display scanning mode, with189

a measurement frequency of 50 Hz and a scan frequency of 1 Hz (50 measurements per scan).190

The lidars use 55 beams which are emitted from a rotating scanning head at an elevation angle191

of 30◦ from the vertical, and are rotated a full 360◦ to make the conical scan. Each conical scan192

requires approximately 15 s, as each vertical level is measured individually at 1 Hz. The lidars193

were oriented using GPS to align the instruments with true north and subsequently cross-validated194

to ensure agreement in measurements of wind speed and direction. Processed scan output thus195

resulted in an observational temporal resolution of 15 s. This mode allowed for measurement196

of the zonal, meridional, and vertical components of wind speed at vertical levels ranging from197

10 to 150 m agl. Processed scan output is then averaged over 10 min intervals, allowing mean198

wind profiles of the surface and lower mixed sublayers of the atmospheric boundary layer to be199

captured. Note that this observed layer encompasses the vertical extent of the wind turbine rotor200

disks installed in APWRA. Quality control filtering was performed by (i) eliminating observations201

recorded during precipitation events, (ii) rejecting lidar data with signal-to-noise (SNR) ratios202
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lower than −22 dB, and (iii) removing outliers exceeding 4 standard deviations from a 30 min203

window mean centered on the sample time. Installation of lidars in complex terrain introduces the204

potential for measurement error; for example, Bingöl et al. (2010) concluded that measurements205

of horizontal wind speed using conically-scanning lidars are on the order of ±10%. The error is206

introduced by heterogeneity in flow patterns over complex terrain and is considered in throughout207

this analysis. A 52 m-tall meteorological station (referred to as the meteorological tower) was208

located on a third parallel ridgeline east of the EOP Doppler lidar and was used to evaluate surface209

layer properties not captured by the lidars [see Wharton and Foster (2022) for more information].210

Data was collected from 7 July to 23 September 2019 for a total observation period of 1872 h in211

10 min intervals after internal quality control. For evaluation of HRRR, instrument data is averaged212

hourly to match the temporal frequency of HRRR output, with averaging windows centered on each213

hour. After processing and data rejection due to quality control, the WOP lidar retained 1828 h214

of compliant observational data, the EOP retained 1562 h, and the meteorological tower retained215

1316 h. Note that EOP lidar has lower data availability than WOP because the EOP lidar had216

more downtime due to its electrical source (EOP lidar ran on solar and battery power, WOP ran217

on grid power) and because of aforementioned filtering of outliers from the time-window means218

(filtering step iii). Additionally, note that wake effects from APWRA, which lies to northwest of219

Site 300, are not considered to have effects on observational quality due to the distance between220

APWRA and the observation site (approximately 5 km for the closest turbines), and the prevailing221

winds largely coming from the west and west-southwest. Although it has been shown that wake222

effects downstream from a wind farm are possible at this distance (Christiansen and Hasager 2005;223

Fitch et al. 2013; Platis et al. 2018), these studies have been perfomed over homogeneous surfaces224

(flat surfaces in numerical studies, sea surface in observational studies), have accounted for taller225

turbines than those on the lee side of the APWRA wind farm, and have noted the mitigating effects226

of rough terrain on wake distance. The location of data collection is considered topographically227

similar to APWRA given their siting along the Diablo Range and a similar degree of terrain228

variability at Site 300 and APWRA.229
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Fig. 1: Topographical map of Lawrence Livermore National Laboratory Site 300 in central Cali-
fornia (north is at the top of the map). (a) Regional map showing the location of the APWRA wind
turbine complex (red dots indicate individual wind turbines) relative to the Site 300 observation
locations (indicated by black box encasing blue and green dots, shown in detail in right inset
plot). (b) Inset view showing local map of Site 300 observation locations, with western (WOP)
and eastern (EOP) observation point lidars denoted by green and blue dots, respectively, while the
meteorological tower is denoted by a grey square. The distance between WOP and EOP is approx-
imately 1 km. Terrain data were obtained from the United States Geological Survey GMTED 2010
survey (Danielson and Gesch 2011) and wind turbine locations were obtained from data provided
in Hoen et al. (2018). (c) Inset view showing local map of Site 300 as in panel (b) with soil height
data (colored cells) and grid points (black dots) used in HRRR (as a proxy for terrain data) to
highlight the spatial resolution of topography within the model.

d. Derived quantities230

Several quantities used to analyze HRRR model performance relative to observations are defined231

in this section.232

1) Bias calculation methods233

Model bias is defined as:234

bias = 𝜓model −𝜓obs (1)

where 𝜓 is the meteorological variable. For the purposes of this study, model refers to HRRR235

data and obs refers to observational data recorded by the lidars at WOP and EOP. A positive bias236

corresponds to model overprediction and a negative bias corresponds to model undeprediction237

relative to observations. For bias calculations of horizontal wind properties, a minimum wind238

speed threshold was established at the 10th-percentile of horizontal wind speeds at the median239

turbine hub height (80 m agl), as defined in Section 2a.240
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For several variables analyzed, it is useful to provide the relative (also known as fractional) bias241

between model and observed values. The relative bias is defined as:242

relative bias = 100
(
𝜓model −𝜓obs

𝜓obs

)
(2)

2) Rotor-equivalent wind speed243

The rotor-equivalent wind speed is a metric used to account for the kinetic energy passing244

throughout the vertical extent of a swept rotor area (i.e., the span of the wind turbine blades)245

corresponding to a wind turbine (Wagner et al. 2014). This metric is useful for wind energy246

forecasting, as it accounts for variations in the vertical wind profile spanning a turbine rotor. The247

cross-rotor wind variations are often several meters per second (Wagner et al. 2009; Wharton and248

Lundquist 2012), and can be higher in areas with high vertical wind shear. Accounting for these249

variations has been shown to improve estimates of wind speeds across turbine rotors (Liu et al.250

2021; Sasser et al. 2022), especially in areas with complex terrain and variable boundary layer251

flows (Van Sark et al. 2019), which has implications for the accuracy of wind energy forecasting.252

Rotor-equivalent wind speed is calculated as in Equation 3:253

𝑈eq =

[
𝑁∑︁
𝑖=1

𝑈3
𝑖

𝐴𝑖

𝐴

]1/3

(3)

where 𝑖 denotes a vertical level, 𝑁 denotes the number of vertical levels spanning the swept254

rotor area, 𝑈𝑖 is the horizontal wind speed at vertical level 𝑖, 𝐴𝑖 is the swept rotor area between255

vertical levels 𝑖 and 𝑖−1, and 𝐴 is the total swept rotor area. Results using this metric are provided256

in Section 3e for evaluating model bias of horizontal winds in a context relevant to wind energy257

applications.258

e. North American Regional Reanalysis dataset259

To provide insight into nonlocal phenomena influencing HRRR performance at Site 300, the260

North American Regional Reanalysis (NARR; Mesinger et al. 2006) dataset was used to provide261
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daily synoptic-scale meteorological conditions. These conditions were then associated with time262

windows of maximal and minimal HRRR bias magnitude relative to lidar-observed horizontal wind263

speeds at hub height (80 m agl). This analysis is intended to identify synoptic phenomena that are264

associated with maximal and minimal HRRR bias magnitudes, with the goal of determining con-265

nections between synoptic-scale phenomena (which are generally forecast with high accuracy) and266

local conditions (which present a more difficult forecasting problem). NARR data for geopotential267

height at daily frequency was chosen as an observationally-constrained dataset that is independent268

from HRRR and is commonly used for mesoscale and synoptic-scale analysis. Note that for this269

analysis, HRRR bias at each site is averaged over a 3 h period to filter out transient events and allow270

for a more consistent comparison to NARR. The analysis proceeds as follows:271

1. The HRRR bias at each site was averaged over 3 h windows for the entire study period.272

Window bias magnitudes exceeding one standard deviation (1𝜎) above the mean over the273

period were flagged for maximal bias magnitude, while windows with bias magnitudes less274

than 1𝜎 below the mean were flagged for minimal bias magnitude.275

2. Days with multiple 3-hourly windows of maximal or minimal HRRR bias magnitude were276

identified at each site.277

3. To connect patterns in local observations with synoptic-scale wind patterns, days with multiple278

3-hourly windows in common at both sites were considered, as these are indicative of days279

with synoptic-scale forcing contributing to elevated or suppressed HRRR bias magnitude,280

rather than shorter-lived local phenomena.281

4. These days were then identified within the NARR dataset and used to create respective282

composite mean fields corresponding to conditions during days with maximal and minimal283

HRRR bias magnitude.284

NARR geopotential height data (𝜙) was used at 500 hPa (termed 𝜙500) and 850 hPa (termed285

𝜙850) for synoptic-scale and mesoscale analyses, respectively. The intent of using 𝜙500 was to286

identify synoptic patterns that related with local HRRR performance, while using 𝜙850 allows for287

the association of regional wind patterns with local HRRR performance. In total, 30 days that288

met the maximal HRRR bias magnitude threshold and 10 days that met the minimal HRRR bias289
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magnitude threshold were identified during the observation period (total of 40 days among both290

groups of days).291

3. Analysis and results292

a. Study area meteorological conditions293

A composite of horizontal wind speeds is shown in Figure 2a and b for the WOP and EOP,294

respectively. Mean horizontal wind speed minima occurred in the morning, with 10 m agl wind295

speeds measuring an average of approximately 3 ms−1 at 10:00 local time (LT) at both sites during296

the development of the convective boundary layer. Mean horizontal wind speed maxima occurred297

in the evenings at approximately 20:00 LT, with 10 m agl wind speeds reaching an average of298

14 ms−1 at EOP and 11 ms−1 at WOP. Because the lidars are placed atop hills, the near-surface299

wind speed maximum is evidence of a speed-up event over the local topography, which is a regular300

occurrence just before sunset and has been observed at other locations with similar meteorology301

(Banta et al. 2021; Djalalova et al. 2020; Pichugina et al. 2019).302

Figures 2c and d show a diurnal cumulative frequency plot of wind directions for WOP and EOP,303

respectively. Similar to horizontal wind speeds, wind directions follow a diurnal profile, with winds304

at all levels being predominantly west- and west-southwesterly (225 < 𝜙 < 270◦) during evening305

and overnight hours, with a northerly shift during the morning hours. This diurnal profile reveals306

the role played by mesoscale winds during the evening and overnight hours, with westerlies driven307

by onshore flows due to marine air intrusions, largely induced by land-sea temperature gradients308

(McClung and Mass 2020). The northwesterly shift in winds during the daytime is less attributable309

to a given phenomenon, but may be a result of flow channeling through the San Pablo Bay and the310

Sacramento River Delta to the north.311

13



Fig. 2: Diurnal profile of time-averaged observed values for WOP (a, c) and EOP (b, d) for
horizontal wind speed (a-b) and horizontal wind direction at 80 m agl (c-d). For panels (a, b),
the arrows indicate wind direction, with upward-pointing arrows corresponding to southerly flow
and rightward-pointing arrows corresponding to westerly flow. Note that panels (c, d) for wind
direction are cumulative frequencies of each wind direction for their given hour. Vertical yellow
and blue dashed lines denote approximate sunrise and sunset times at the study area, respectively.

Fig. 3: Site-averaged vertical profiles of observed (black dotted line) and model (blue line with
triangular markers) horizontal wind speed hourly averages at 0:00 (midnight), 6:00 (early morning),
12:00 (midday), and 18:00 (early evening) LT, respectively. Mean relative bias (in percent, see
Equation 2) for each set of profiles are shown to the right of each plot in red. Grey and blue shading
denote one standard deviation from the observed and model means, respectively. Horizontal error
bars at the marker points denote a +/- 10% error from the composite mean observed horizontal
wind speed to account for instrument error, following Bingöl et al. (2010). Horizontal dashed
lines denote the mean minimum and mean maximum rotor extents of turbines installed at APWRA
(Hoen et al. 2018).
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Fig. 4: As in Figure 2, except that model biases are plotted for wind speed (a–b) and wind direction
(c-d). Model data used is HRRR output at forecast hour 1.
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b. Model performance evaluation of boundary layer dynamics312

1) Horizontal winds313

The mean diurnal profiles of observed and model horizontal wind speeds among both sites are314

shown in Figure 3 using hourly averages, shown at 6-hour intervals. Overall, HRRR horizontal315

wind speed bias was lowest in the afternoon (12:00 to 18:00 LT) and highest during early morning316

(00:00 to 06:00 LT) when averaged over the observed 150 m. HRRR overpredicted horiztonal wind317

speeds during nighttime hours and underpredicted during daytime hours, within the 0-150 m layer318

agl. HRRR also generally underpredicted daytime horizontal wind speeds in the lowest levels (<319

30 m) at all times where peak speed-up flows were observed. Note that 30 m generally coincides320

with the lowest extent of a turbine rotor disk. This analysis considers the potential for measurement321

error of ±10% associated with lidar usage in complex terrain (Bingöl et al. 2010) (see error bars for322

observation vertical profiles in Figure 3), although this error magnitude is not expected to change323

conclusions regarding HRRR bias relative to lidar measurements.324

At midnight (0:00 LT), the average observed wind speed ranged from 10 ms−1 at 10 m agl to325

approximately 7 ms−1 at 150 m agl, following a decreasing profile with respect to height. Average326

model wind speeds were 2 ms−1 lower than observations at 10 m, although the model vertical327

profile demonstrated an increase in wind speed with height, following a quasi-logarithmic profile328

due to the combination of a coarse vertical grid and the Monin-Obukhov boundary condition329

imposed at the surface. This resulted in an underprediction of wind speed in the surface layer330

reaching 10%, with the remainder of the vertical wind profile being overpredicted by as much as331

30%. By early morning (6:00 LT, immediately before sunrise), observations show that surface layer332

winds have lessened with near-constant average wind speeds of 5 to 6 ms−1 throughout the vertical333

observational profile. On average, the model predicted the magnitude and vertical profile of winds334

similarly to overnight hours, with relative errors ranging from 10% underprediction at the surface335

to a 30% overprediction at 150 m agl. By midday (12:00 LT), average observed winds resumed a336

reverse shear profile, with 10 m winds averaging 6.4 ms−1 and decreasing to approximately 5 ms−1
337

at 150 m. Average model winds resumed a quasi-logarithmic boundary-layer profile, with winds338

ranging from 4.4 ms−1 at 10 m to 5 ms−1 at 150 m. This resulted in underpredictions of horizontal339

wind speed exceeding 20% at the surface, with decreasing underprediction through the observed340

layer, reaching zero bias at 150 m agl. Daytime biases throughout the observed layer persisted341
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through the early evening (18:00 LT) with surface winds underpredicted by up to 30%, although342

relative errors throughout most of the observed layer reduced to < 5%. The persistence of strong343

near-surface bias through the afternoon and evening indicates an underprediction of speed-up344

events that are characteristic of boundary layer flows in the study area.345

Model bias in horizontal wind speed prediction follows a diurnal pattern at both sites, as shown346

in Figure 4. Nocturnal winds above the surface (> 25m agl) are overpredicted, with peak over-347

predictions occurring during the decay of the evening speed-up events. At sunrise, model bias348

decreases throughout the observed layer to < 1 ms−1 at both sites. However, a negative model bias349

(model underprediction) develops throughout the morning, with peak underpredictions reaching350

4 ms−1 near the surface (< 25m agl), with underprediction magnitudes lessening with height.351

Model biases reach greater magnitudes for over- and underpredictions at EOP than at WOP, which352

may be a result of predominantly westerly flows reaching the WOP observation site relatively353

unobstructed by prominent topographical features upstream of the observation site. In contrast,354

EOP is downstream of WOP during westerly flows and is at a lower height, potentially subject to355

flow perturbations at scales that are unresolved by HRRR.356

It is noted that the diurnal pattern of wind speed bias suggests a correlation between atmospheric357

stability and model performance that could be investigated in future work. However, this analysis is358

not pursued here due to a combination of observational constraints (i.e., the lack of high-frequency359

temperature observations at the lidar sites) and the limitations of conventional stability estimates360

in complex terrain (Albornoz et al. 2022; Peterson and Hennessey Jr 1978; Touma 1977).361

2) Wind direction362

Model performance between sites for wind direction followed similar composite mean diurnal363

profiles among sites througout the depth of the observed layer, as shown in Figure 4c-d. Positive364

composite mean wind direction model biases were typical throughout the overnight and early365

morning hours, which suggest a more westerly and northwesterly component in modeled flows366

relative to observed flows, given that observed winds are primarily westerly and southwesterly367

during these times. Throughout the day, model biases become negative, with strongest negative368

biases exceeding 60◦ during the early afternoon at both sites. Given that wind directions shift369

northwesterly during the daytime, the negative wind direction biases during the early afternoon370
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suggest that HRRR continues predicting primarily westerly flow, and may not resolve local daytime371

shifts in wind direction. Into the evening hours, composite mean wind direction model biases372

become positive again, with vertically-averaged values of approximately 30% at both sites during373

hours of observed mean westerly and southwesterly flow, again suggesting a westerly bias in HRRR374

predictions of flow direction.375

The difference in bias characteristics between WOP and EOP can be attributed to the observed376

differences in composite mean flow directions among these sites. The modeled composite mean377

wind directions are similar between sites, given that they are in neighboring cells. However, as seen378

Figure 2c-d,the observed wind direction composite means show a disparity between sites. Namely,379

WOP demonstrates a relatively higher cumulative frequency of winds with a southerly component380

during the daytime than EOP (see Figure 2c), while EOP shows a higher portion possessing381

a northerly component (Figure 2d). Therefore, it can be deduced that bias characteristics are382

different among sites due to effects of complex terrain that are unresolved by HRRR.383

Due to the complex terrain surrounding the observation sites, flow properties are likely to be384

strongly dependent on the direction of the prevailing wind. To investigate the relationship of385

horizontal wind speed model bias with the direction of the flow, the mean absolute errors of HRRR386

wind speed predictions relative to observations are shown by direction in Figure 5 at 40, 80, and387

150 m agl. At 40 m agl, the largest errors in horizontal wind prediction occur for winds coming388

from the southeast at both sites, with relative errors reaching 50%, whereas small errors occur389

for winds coming from the west and southwest, with errors reaching 30%. Similar patterns are390

evident at 80 and 150 m agl, with southeasterly and easterly winds being associated with the largest391

horizontal wind speed errors and westerly winds being associated with the smallest. Note that392

sample sizes are considerably larger for winds with a westerly component than for winds with an393

easterly component, which may partially explain the difference in mean error values between the394

different directions. However, error distributions were found to be significantly (𝑝 < 0.01) different395

using a 2-sample Kolmogorov-Smirnov test, indicating that errors from the different directions are396

characteristically different.397
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Fig. 5: Wind rose plots showing time-averaged mean absolute errors of horizontal wind speed
predictions relative to observations at both lidar observation sites (EOP and WOP) at 40, 80, and
150 m agl, respectively. Model data used is HRRR output at forecast hour 1, which corresponds
to a 1 h lead time. Concentric circles denote percentage error (error labels located in the E-NE
sector of the plot), while numbers next to the bars indicate number of unique observations for each
wind direction bin. Bar width is proportional to the number of unique observations for each wind
direction bin.

Fig. 6: Diurnal composite means of vertical velocity (𝑤) at WOP and EOP at (a) 40, (b) 80, and
(c) 150 m agl, respectively. Diurnal composite means of modeled 𝑤 are shown in dashed lines,
while diurnal compositemean of observed 𝑤 are shown in solid lines with circle markers. Model
data used is HRRR output at forecast hour 1.

c. Vertical velocity398

Composite mean diurnal profiles of observed and modeled vertical velocities at both observation399

points are shown in Figure 6. Note that modeled and observed vertical velocity should be considered400

qualitatively due to limitations of vertical velocity measurements in complex terrain using the VAD401

scanning method described in Section 2c (Bingöl et al. 2010). Despite agreement in diurnal trends402

of observed composite mean 𝑤, magnitudes of 𝑤 may be impacted by the effects of terrain-induced403
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flow that is not properly captured by this measurement procedure, thus preventing conclusions of404

speed-up events based on measurements of 𝑤 to be made.405

The diurnal profile of insolation can be inferred from patterns of 𝑤 in both observed and modeled406

data, with a cycle of near-neutral and positive 𝑤 (i.e., upward motion) at the surface during the day407

and negative (i.e., downward motion) near-surface𝑤 overnight. Vertical velocities at higher vertical408

levels generally follow a similar profile, although rising motions are weaker during the day while409

strong subsidence occurs during the early evening hours before sunset. The coincidence of mean410

downdraft peak magnitudes and near-surface horizontal speed-up events (see Figure 2) suggests that411

localized surface divergence connects these phenomena. At EOP and WOP, 𝑤 magnitude maxima412

occur during downdrafts above 50 m agl, with average subsidence values reaching -1 ms−1, as413

compared to maximum mean vertical velocities of 0.3 ms−1 at WOP during the early afternoon.414

The difference in observed composite mean profiles of 𝑤 between sites is not reflected in the415

model composite mean profiles, further indicating that HRRR does not resolve heterogeneous flow416

properties in a region with complex terrain.417

Notable differences between observation sites are evident in composite mean diurnal profiles of418

observed 𝑤. With regards to intersite differences in diurnal profiles of observed composite mean 𝑤,419

peak differences occur during the late afternoon and evening hours. Magnitudes reach 0.6 ms−1 at420

approximately 18:00 LT, which is coincident with times of strongest horizontal winds and speed-up421

events, and persist but decrease overnight. Interestingly, intersite differences in diurnal profiles of422

observed composite mean 𝑤 decrease with increasing height outside of speed-up events, which423

provides further evidence of the effects of intersite terrain variability on near-surface dynamics.424

In the observed dataset, it is evident that EOP experiences much stronger composite mean425

downdrafts at sunset relative to WOP. This may be a result of high terrain variability, such that426

peaks upwind of EOP (including the hill upon which WOP is situated) generate lee effects and lead427

to stronger downdrafts downwind, such as at EOP. This is further evidenced by WOP experiencing428

stronger mean updrafts than EOP, which may be a result of terrain-driven flow due to its steeper429

grade, its topographical prominence leading to unobstructed insolation and subsequent surface430

heating, as well as weaker effects from neighboring peaks. In contrast, EOP experiences stronger431

mean downdrafts, which may be terrain-driven due to its position in the lee of the Diablo Range432

and its lower prominence relative to surrounding peaks.433
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d. Synoptic-scale atmospheric conditions associated with wind speed bias434

Reanalysis and NWP models are skilled at representing synoptic-scale phenomena, such as435

synoptic-scale dynamics. Given that synoptic-scale processes influence those at smaller scales436

(i.e., mesoscale and local scales), analyzing synoptic-scale processes may provide insight into437

patterns influencing local-scale NWP biases. This approach is taken to explore the relationship438

between synoptic-scale and regional wind patterns, with the goal of identifying a relationship439

between synoptic patterns and HRRR forecast bias magnitudes at Site 300. This relationship440

between patterns at different horizontal scales is investigated in this portion of the analysis using441

the methodology outlined in Section 2e for geopotential heights at 500 hPa (𝜙500) and 850 hPa442

(𝜙850), respectively.443

Contours of composite mean geopotential heights at 𝜙500 and 𝜙850 during identified maximal and444

minimal bias magnitude days are provided in Figure 7. Accordingly, analysis of reanalysis data and445

model performance is discussed in terms of synoptic-scale and mesoscale conditions. Additionally,446

standardized anomalies of 𝜙500 and 𝜙850 are derived to investigate synoptic and mesoscale patterns447

associated with days of maximal and minimal model bias magnitude.448

At Site 300, NARR-derived mean 𝜙500 was 5872 m with a standard deviation of 53 m over the449

study period. During days with maximal model bias magnitude, 𝜙500 featured a composite mean450

of 5901 m with a standard deviation of 30 m, which corresponds to a standardized anomaly of451

+0.53𝜎 relative to mean 𝜙500 over the duration of the study period. The synoptic setup of 𝜙500452

shown in Figure 7a shows highest 𝜙500 values situated over the southwestern United States with453

decreasing 𝜙500 towards the Pacific coast, suggesting ridging over the western United States during454

days with highest model bias magnitudes at Site 300. The composite mean standardized anomalies455

of 𝜙500 show further anomalously high 𝜙500 over the Pacific coast during days of maximal model456

bias magnitude (see Figure 7c), which indicates the presence of anomalously high pressure near457

Site 300 during days when bias magnitude is largest.458

During days with minimal model bias magnitude, NARR-derived mean 𝜙500 was 5826.4 m with459

a standard deviation of 78 m, which corresponds to a standardized anomaly of -0.61𝜎 relative to460

mean 𝜙500 over the duration of the study period. Figure 7b shows the synoptic setting at 500 hPa,461

revealing low values of 𝜙500 over the Pacific coast relative to zonal means, suggesting a trough over462

the western United States during days with minimal model bias magnitude at Site 300. Composite463
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mean standardized anomalies of 𝜙500 show anomalously low 𝜙500 to the northwest of Site 300,464

indicating anomalously low pressure near Site 300 during these days. The standardized anomaly465

pattern during minimal model days is of a similar location, similar magnitude, and opposite in sign466

to the pattern shown for standardized anomalies during maximal model bias magnitude days. Note467

that the composite mean values for 𝜙500 exceed the NARR 40-year July-September mean during468

days of maximal model bias magnitude and are below the NARR 40-year July-September mean469

during days of minimal model bias magnitude in the region surrounding Site 300 (Brewer and470

Mass 2016).471

The association of anomalously high 𝜙500 values and ridging with weaker model performance,472

as well as troughing with stronger model performance, suggests that synoptic regimes play a473

role in HRRR predictive skill for low-level winds at Site 300. 500 hPa ridging is often asso-474

ciated with anomalously-weak horizontal winds and a relative increase in the contributions of475

thermodynamically-induced multiscale effects on local-scale dynamics. The primary regional fac-476

tor contributing to local-scale dynamics is a strengthening of the sea breeze circulation, while local477

factors include stronger vertical motion and heat transport due to weakened horizontal winds and478

increased insolation (Banta et al. 2021; Brewer et al. 2012).479

In contrast, 500 hPa troughs are associated with stronger and less variable onshore winds from480

the Pacific, resulting in cool air intrusion over the western United States that heightens the effect of481

the dynamical contribution to wind speeds relative to the effects of thermodynamic contributions482

(Banta et al. 2021). These findings imply that above-average localized HRRR performance occurs483

during periods with a synoptic pattern associated with uniform winds (i.e., low temporal variability484

in wind speed and direction) over Site 300, while below-average HRRR performance occurs during485

periods with a synoptic pattern associated with weaker winds and heightened regional-to-local scale486

thermodynamic contributions. This aligns with findings in Banta et al. (2021) in the Columbia487

River basin over the northwestern United States, which showed that HRRR performance improved488

during days with stronger synoptic-scale wind speeds and reduced contributions from diabatic489

heating processes and warm-air advection.490

To provide a more direct connection between synoptic-scale atmospheric conditions and hub-491

height winds at Site 300 (i.e., local scale), the 850 hPa level was also evaluated to roughly approxi-492

mate the interface between the free troposphere and the boundary layer. At Site 300, NARR-derived493

22



mean 𝜙850 was 1519 m with a standard deviation of 18 m over the study period. Days with maximal494

model bias magnitude featured a composite mean 𝜙850 of 1522 m with a standard deviation of495

19 m, presenting a standardized anomaly of +0.32𝜎 relative to mean 𝜙850 over the study period.496

The mesoscale distribution of 𝜙850 shown in Figure 7e shows a strong 𝜙850 gradient to the west497

of the Pacific coast with a weakening gradient over land, suggesting strong offshore winds with498

slower flow over central California. The composite mean standardized anomalies of 𝜙850 show499

slightly above-average high 𝜙850 over Site 300. This anomaly pattern indicates that horizontal flow500

near the boundary layer interface is somewhat weaker than the study period mean (see Figure 7g).501

Similar to composite anomalies of 𝜙500, the 𝜙850 anomaly pattern further suggests the presence502

of anomalously high pressure near Site 300 during days when model bias magnitude is largest.503

Similar to composite anomalies of 𝜙500, the 𝜙850 anomaly pattern further suggests the presence of504

anomalously high pressure near Site 300 during days when model bias magnitude is largest.505

On days with minimal model bias magnitude, NARR-derived mean 𝜙850 was 1510 m with506

a standard deviation of 23 m, corresponding to a standardized anomaly of -0.61𝜎 relative to507

composite mean 𝜙850 over the duration of the study period. Figure 7f shows the composite mean508

mesoscale distribution of 𝜙850 on days with minimal model bias magnitude over Site 300, revealing509

a stronger gradient of 𝜙850 relative to days with maximal model bias magnitude and the surrounding510

region. In contrast to the pattern of 𝜙850 during days with maximal model bias magnitude, the511

gradient magnitude implies stronger and more uniform flow (i.e., less temporal variability in512

wind speed and direction) at 850 hPa during days with minimal model bias magnitude. This is513

reinforced by the spatial distribution of composite mean standardized anomalies of 𝜙850 in the area514

surrounding Site 300. As shown in Figure 7f, Site 300 is flanked by negative anomalies of 850 hPa515

to the north and positive anomalies of 850 hPa to the south, indicating a favorable dynamical setup516

for enhanced horizontal flows relative to the study period mean. As for composite mean values517

of 𝜙500, values of 𝜙850 exceed the NARR 40-year July-September mean during days of maximal518

model bias magnitude, and are below the NARR 40-year July-September mean during days of519

minimal model bias magnitude in the region surrounding Site 300 (Brewer and Mass 2016).520

During days of maximal HRRR bias magnitude relative to lidar observations, the 𝜙850 composite521

mean shows northerly flow across Site 300 (see Figure 7c). Composite mean 𝜙850 at Site 300522

reached 1523 m, which exceeds mean 𝜙850 values corresponding to the monthly mean conditions523
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from July to September at Site 300 in the NARR dataset (1979 to 2019) (Brewer and Mass 2016).524

During days of minimal HRRR bias magnitude, the 𝜙850 composite shows stronger northwesterly525

onshore flow at 850 hPa over central California (see Figure 7d). Composite mean 𝜙850 at Site 300526

reached 1510 m, which is near (within 5 m) the mean 𝜙850 values corresponding to the monthly527

mean conditions from July to September at Site 300 in the NARR dataset (1979 to 2019).528

Two notable differences arise in comparing the 𝜙850 setup between maximal and minimal HRRR529

bias magnitude days: the (1) direction and (2) magnitude of the 850-hPa geopotential height530

gradient. Regarding (1), days with maximal HRRR bias magnitude show meridionally-oriented531

contours, suggesting mean northerly flow over Site 300. In contrast, days with minimal HRRR532

bias magnitude show both zonal and meridional components, resulting in mean northwesterly flow533

over Site 300. Assuming flow at 850 hPa follows the geopotential contours, the composite analysis534

demonstrates the role of wind direction in model skill for forecasting winds. Results suggest that535

the more westerly the flow, the shorter the path for an air parcel to take over land, reducing the536

opportunity for frictional and topographic effects to perturb the prevailing flow. Regarding (2),537

days with maximal HRRR bias magnitude show a lesser 𝜙850 gradient compared to days with538

minimal HRRR bias magnitude, indicating that the pressure gradient over Site 300 is weaker and539

consequently, that horizontal winds over Site 300 are weaker.540

To further investigate the relationship between the 𝜙850 gradient and HRRR bias magnitude, the541

gradient of 𝜙850 along a given path 𝑠𝑖 (where the subscript 𝑖 denotes an individual path) normal to the542

composite-mean contours was analyzed for individual days identified as maximal and minimal bias543

magnitude days, respectively. This approach has previously been used to evaluate numerical model544

performance by using the connection between surface layer dynamics and larger-scale factors545

(Collins et al. 2024a,b; Goutham et al. 2021). Twelve paths 𝑠 were selected at approximately546

0.5◦ latitude intervals along the California coast with path lengths of 500 km, oriented from the547

west-southwest (247.5◦ heading) direction to the east-northeast (67.5◦ heading) direction, roughly548

normal to 𝜙850 contours composited over all identified days (see Figure 7e and f for an overlay549

of transects on the region). The distribution of the resultant gradients, 𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖 (i.e., the550

geopotential gradient evaluated at a path 𝑠𝑖), are shown for maximal (red) and minimal (blue)551

days in Figure 8. Values of 𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖 during maximal HRRR bias magnitude days followed552

an approximately-normal distribution, with a mean value of -0.03 mkm−1 and standard deviation553
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of 0.02 mkm−1 (negative gradient denotes decreasing geopotential height moving eastward). In554

comparison, values of 𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖 during minimal HRRR bias magnitude days followed a wider555

distribution, with a mean value of -0.05 mkm−1 and standard deviation of 0.02 mkm−1.556

Overall, days with minimal HRRR bias magnitude featured mean gradient values with magnitudes557

1𝜎 greater than those on days with maximal HRRR bias magnitudes, where 𝜎 is the standard558

deviation of the distributions of 𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖. Moreover, several instances of gradients during559

maximal bias magnitude days show a reversal of gradient direction
[
𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖 > 0

]
, which560

does not occur during minimal HRRR bias magnitude days, highlighting the association between561

westerly flow and improved HRRR performance.562

Note that a potential shortcoming of using 𝜙850 in this analysis is presented by higher elevations563

to the east of the San Joaquin valley, which may intersect the 850 hPa pressure level. Despite564

this potential issue, we note that transects used for gradient evaluation do not intersect areas with565

elevations that are high enough to cross 𝜙850.566
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Fig. 7: Composite means of 500 hPa and 850 hPa geopotential heights are shown in panels a-b
and e-f, respectively, corresponding to days with maximal and minimal HRRR bias magnitude.
All geopotential height contours are in units of meters. Similarly, composite mean standardized
anomalies of 500 hPa and 850 hPa geopotential heights are shown in panels c-d and g-h, respectively.
Note that a composite is generated using a synthesis of observations from both sites (WOP and EOP),
as the distance between WOP and EOP is negligible relative to the spatial resolution of NARR.
Site 300 is demarcated by the red dot. The coloring of each geopotential contour corresponds
to the geopotential height, as denoted in the contour labels and the colorbar. Transects for the
analysis at the 850 hPa level are represented in panels e-f by the dotted lines approximately normal
to the contours. Note that the region considered in composite means of 500 hPa geopotential
heights (panels a-d) features a larger spatial extent than the region considered in composite means
of 850 hPa geopotential heights (panels e-h).
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Fig. 8: Histogram (bars) and cumulative distributions (curves) for gradients 𝜕
(
𝜙850 |𝑠𝑖

)
/𝜕𝑠𝑖 of 850

hPa geopotential height 𝜙850 along a transect 𝑠𝑖 normal to geopotential contours over Site 300 for
days with maximal (red) and minimal (blue) HRRR bias magnitude (sample size 𝑁 = 360 and
𝑁 = 180, respectively). The distributions are different to a statistically-significant degree (𝑝 ¡ 0.01)
using a 2-sample Kolmogorov-Smirnov test. Note that samples are synthesized from observations
from both sites given the synoptic-scale analyses.
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e. Wind energy forecasting performance567

To assess the ability of HRRR to forecast wind power generation in the nearby APWRA,568

power curves were obtained from generic turbine models provided by the National Renewable569

Energy Laboratory (NREL) (see Figure 9). These curves are scaled from International Energy570

Agency (IEA) turbine models developed through IEA Wind Task 37. Specifically, NREL models571

NREL-1.7-103 (1.7 MW) and NREL-2.3-107 (2.3 MW) [both downscaled from IEA-3.4-130-572

RWT, Bortolotti et al. (2019)] are used, which match the turbine characteristics of most of the573

turbines in APWRA. Power curves are obtained as a function of hub-height wind speed, although574

rotor-equivalent wind speed (𝑈𝑒𝑞, see definition in Equation 3) is used as the metric for the analysis575

herein. This metric is intended to provide a more representative measure of horizontal wind speeds576

over the full vertical extent of the turbine rotor region (Wagner et al. 2009, 2014).577

The power curves and wind forecasting analysis presented here are intended to illustrate the578

potential effect of HRRR wind speed biases on wind energy forecasting, rather than serving as a579

precise representation of forecast biases in APWRA. Note that the analysis does not consider the580

horizontal variability in winds over the entire APWRA, nor the variability between APWRA and581

Site 300. Rather, the analysis uses characteristic wind profiles from Site 300 that are assumed to582

be representative of the conditions in the region surrounding APWRA. Note that this analysis will583

focus on the NREL-1.7-103 power curve for turbines rated at 1.7 MW given the similarity in power584

curves (see Figure 9), as the primary difference between curves is rating magnitude.585

To begin understanding model biases in power generation forecasting, model bias in rotor-586

equivalent wind speed predictions were analyzed using a composite hourly-averaged mean (see587

Figure 10). At both sites, a diurnal trend in model bias exists, with model overprediction of588

rotor-equivalent wind speeds during overnight hours and underprediction during daytime hours.589

Overprediction magnitudes are greater at WOP than EOP, with biases exceeding 3 ms−1 at 02:00590

LT, whereas EOP biases reached 2 ms−1 around the same time. Bias magnitudes decreased591

toward 0 shortly after sunrise at both sites, and increased again through the mid-afternoon, with592

WOP underpredictions reaching -1 ms−1 and EOP exceeding -3 ms−1. These biases decreased593

again toward 0 shortly after sunset, before increasing to overpredictions again into the nighttime.594

Variance in observed and model composite mean wind speeds followed similar diurnal profiles at595
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both sites, with modest increases in wind speed variance during periods of stronger winds (notably596

at sunset, when speed-up flows occur) and decreases in wind speed variance during daytime hours.597

The NREL power curves are used to generate estimates for composite diurnal power generation598

from lidar observations and HRRR predictions. As shown in Figure 11, estimated power generation599

based on observed winds at midnight (00:00 LT) was approximately 0.70 MW at WOP for the600

1.7 MW NREL curve, while estimated generation at EOP at midnight (00:00 LT) was approximately601

0.90 MW. This decreases overnight through the morning to near-zero values at both sites, before602

increasing to its diurnal peak after sunset at approximately 1.25 MW at WOP, and at EOP to603

1.60 MW. Estimated power generation based on HRRR winds, and correspondingly the model604

biases, follow a similar diurnal profile. Substantial overpredictions occur overnight, with model605

estimates of power generation exceeding observational predictions by up to 0.50 MW at both sites.606

As shown in Figure 12, daytime model bias magnitudes decrease to near-zero at WOP, whereas607

underpredictions reach 0.70 MWduring the mid-afternoon at EOP.608

It can also be seen that estimates of generated power are most sensitive to changes in wind speeds609

during periods of wind speeds between 6 and 8 ms−1 (refer to Figure 9), which may explain why610

periods with temporally-variable wind speeds but low wind speed bias magnitude (such as the611

period between 14:00 and 17:00 LST for WOP and 21:00 to 1:00 LST for EOP) have moderate612

to high errors for estimated power generation. Despite these biases, estimated power generation613

profiles based on observed and modeled wind speeds are similar at both sites, given that the614

diurnal profile of wind speed is captured in HRRR and composite mean hub-height winds are often615

simulated within 1𝜎 of observed winds, as shown in Figure 10.616

Analysis of model bias in estimated power generation was also performed over HRRR’s 18 h617

forecast horizon. Although HRRR forecasts are initialized on an hourly basis, the analysis of model618

bias over the forecast horizon samples each forecast at 3 h intervals. The intent of this analysis619

is to determine HRRR prediction skill in forecasting power generation relative to available power620

from observed winds. As shown in Figure 12, several trends in prediction skill are apparent.621

With respect to the diurnal cycle, a diurnal trend in model bias is persistent throughout the622

forecast horizon, with strong overpredictions during overnight hours and minimal bias at WOP to623

moderate underpredictions at EOP during the daytime hours. With respect to the forecast horizon,624

overpredictions become greater with increasing forecast hour, as overpredictions reach their maxima625
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for both sites at 18 h. The ratio of model bias relative to the turbine power ratings reaches626

approximately 70% at WOP and 50% at EOP, respectively, for both power ratings, suggesting627

that HRRR tends to overpredict power at all forecast horizons, especially overnight. The lower628

biases during daytime hours suggests skillful daytime forecasts, which are critical due to common629

temperature-driven load increases during the day. However, most of the diurnal cycle exhibits large630

overpredictions at both sites, indicating a need for improved modeling of boundary layer winds631

to improve short-term wind energy forecasting. For 2.3 MW-rated turbines, similar trends were632

found for all analyses performed in related to power generation using the NREL-2.3-107 power633

curve.634

Fig. 9: Power curves generated for generic turbine models using the NREL-1.7-103 (1.7 MW rated
generator power, left) and NREL-2.3-107 (2.3 MW rated generator power, right) curves. Solid
lines denote generator power 𝑃 as a function of horizontal wind speed 𝑈 and dashed lines denote
the sensitivity of generator power to changes in wind speed (𝑑𝑃/𝑑𝑈).

4. Summary and conclusions635

This study used observational profiling Doppler lidar data to evaluate performance of the HRRR636

model in predicting lower atmospheric boundary layer winds at two complex-terrain sites near637

the APWRA. This region is characterized by recurring local-scale speed-up flows that occur as638

summertime westerly winds are channeled through the Altamont Pass, a gap in the Diablo Range.639

Over the study period in mid-to-late summer 2019, model biases of horizontal wind speed exhibited640

a dependence on time of day and height. The diurnal variability of horizontal wind speed bias641

was made apparent by HRRR overprediction during overnight and early morning hours above the642
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Fig. 10: Composite diurnal hourly means of derived rotor-equivalent wind speeds using observed
winds (black line with circle markers) and HRRR (forecast hour 1) winds (blue line, no markers)
at WOP (left) and EOP (right). Grey and blue shading denote one standard deviation from
the observed and model means, respectively. Note that composite mean model bias (HRRR -
observations) are shown by the bars, with red bars indicating HRRR overprediction and blue bars
indicating underprediction.

Fig. 11: Estimated composite mean hourly generated power for wind turbines at both sites us-
ing observed (solid line) and model (dashed line) winds based on rotor-equivalent wind speeds,
provided for turbines with a 1.7 MW rating. The left column corresponds to estimates at WOP,
while the right corresponds to estimates at EOP. Power curves provided by the International Energy
Agency (IEA) and the National Renewable Energy Laboratory (NREL) (Bortolotti et al. 2019).
Model data used is HRRR output at forecast hour 1.

surface layer, with an underprediction of lesser magnitude occurring during the daytime. The643
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Fig. 12: Power generation forecast biases (HRRR - observations) for wind turbines at WOP (left
column) and EOP (right column), provided for turbines with 1.7 MW ratings. Forecasts are based
on composite hourly mean wind speeds at hub-height (80 m agl). Note that forecast horizon
increases downward along the y-axis, with red-shaded cells indicating HRRR overprediction and
blue-shaded cells indicating underprediction.

diurnal variability in model biases was largely dependent on height, with model underprediction644

maxima occurring within the lowest 30 m agl and overprediction occurring above 100 m agl.645

These dependencies are related to near-surface speed-up events, which were consistently observed646

at the study site but were not captured by the model. At both lidar sites, a near-surface jet-let like647

flow with a peak wind speed around 10 m agl develops during the evening and continues into648

the night. Due to a combination of factors, HRRR is generally unable to capture this non-649

logarithmic flow profile. These factors include limited horizontal resolution of topographic effects,650

limited vertical resolution of near-surface gradients, and a surface boundary condition based on651

Monin-Obukhov similarity theory, which assumes a logarithmic flow profile. In the absence of652

increased resolution, which would be computationally expensive, these results suggest that HRRR653

could benefit from a modified boundary condition that is able to parameterize terrain-driven non-654

logarithmic flows. Such a parameterization could substantially improve near-surface wind speed655

(and thus wind energy) predictions.656

Investigation of additional factors related to forecast bias for horizontal winds was performed by657

evaluating wind speed bias based on prevailing wind direction and synoptic-scale conditions. Bias658

magnitudes were generally highest during periods with non-westerly flows at both lidar observation659

sites. Locally, maximum wind speed biases occurred during periods of southerly and easterly flows660

at all heights. On the synoptic-scale, days with maximal HRRR bias magnitude coincided with661
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days during which ridging occurred over Site 300. Connecting findings from the local- and662

synoptic-scales, it can be inferred that weaker wind speeds and more variable wind directions663

are associated with increased HRRR wind speed bias magnitudes. In contrast, horizontal wind664

speed bias magnitudes were minimal during periods when the prevailing flow over Site 300 had a665

westerly component. This onshore flow pattern was more constant in time and maintained higher666

wind speeds than days with maximal HRRR bias magnitude, at both local- and synoptic scales.667

Synoptic-scale analyses showed that days with minimal wind speed bias magnitude were associated668

with 500 hPa troughs and strong 850 hPa geopotential height gradients occurred with the presence669

of strong onshore winds. These findings indicate that HRRR performance (and therefore wind670

energy forecasting performance) can be linked to synoptic-scale conditions, which are generally671

predicted more accurately and at longer lead times than boundary layer conditions in NWP models.672

Given that the prevailing wind direction is westerly at Site 300 throughout the observed layer,673

this analysis provides evidence that HRRR can be a useful forecasting resource for wind energy674

applications in the APWRA.675

Several similiarities were found between results in this study and those from the WFIP2 field676

campaign, despite differences in site terrain and composite mean conditions. Pichugina et al. (2019)677

found that HRRR underpredicted the strongest wind speeds at all observation sites, with the greatest678

underpredictions occuring during the summer, due in part difficulty capturing the diurnal profile679

of observed horizontal winds. Several studies analyzing WFIP2 observations and corresponding680

HRRR runs (Bianco et al. 2019; Pichugina et al. 2019, 2020) noted that HRRR wind speed biases681

were largest during the nighttime over observed periods (often exceeding 2 ms−1 at 80 m agl) which682

is also found in this study. Moreover, these biases were often amplified during summertime months683

due to the occurrence of speed-up events during the evening transition. Additionally, it was noted684

that results were highly variable between sites over the study region, stressing the need for a dense685

observational network in complex terrain. Banta et al. (2021) noted that HRRR wind speed biases686

in the rotor layer were lower during periods of westerly flow driven by synoptic-scale forcing, while687

biases increased during periods with dominant thermal forcing fostered by upper-level ridging.688

The findings in this study lead to several potential avenues for future research near the AP-689

WRA and other complex-terrain regions. The primary avenue is to employ numerical models690

with higher spatial resolution in an attempt to capture processes that are hypothesized to be oc-691
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curring at scales smaller than 3 km. With increased resolution, the observed speed-up events and692

associated turbulence might be captured in the model, thus reducing bias. Schemes that account693

for increased horizontal flow variability, such as the three-dimensional planetary boundary layer694

(3DPBL) scheme developed by Juliano et al. (2022a), or large-eddy simulation (LES) approaches,695

would likely be favorable for such a study. A second future direction involves further investigat-696

ing the the link between local model performance and synoptic-scale meteorological conditions,697

extending the analysis presented in Section 3d. Such a study could aim to more robustly clas-698

sify HRRR bias using a series of characteristic mesoscale regimes, similar to the characterization699

process performed in Banta et al. (2021). Such studies would allow for an improved understand-700

ing of the factors that modulate local HRRR performance, potentially leading to improved local701

predictions.702
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Jiménez, 2022: Improved representation of horizontal variability and turbulence in mesoscale731

simulations of an extended cold-air pool event. Journal of Applied Meteorology and Climatology,732

https://doi.org/10.1175/JAMC-D-21-0138.1.733

Banta, R. M., and Coauthors, 2021: Doppler-Lidar Evaluation of HRRR-Model Skill at Simu-734

lating Summertime Wind Regimes in the Columbia River Basin during WFIP2. Weather and735

Forecasting, https://doi.org/10.1175/WAF-D-21-0012.1.736

Banta, R. M., and Coauthors, 2023: Measurements and model improvement: Insight into nwp737

model error using doppler lidar and other wfip2 measurement systems. Monthly Weather Review,738

151 (12), 3063–3087.739

Bauweraerts, P., and J. Meyers, 2019: On the feasibility of using large-eddy simulations for real-740

time turbulent-flow forecasting in the atmospheric boundary layer. Boundary-Layer Meteorology,741

171, 213–235.742

Benjamin, S. G., and Coauthors, 2016: A North American Hourly Assimilation and Model Forecast743

Cycle: The Rapid Refresh. Monthly Weather Review, 144 (4), 1669–1694, https://doi.org/744

10.1175/MWR-D-15-0242.1.745

Bianco, L., and Coauthors, 2019: Impact of model improvements on 80 m wind speeds during the746

second wind forecast improvement project (wfip2). Geoscientific Model Development, 12 (11),747

4803–4821.748

Bianco, L., and Coauthors, 2022: Comparison of Observations and Predictions of Daytime749

Planetary-Boundary-Layer Heights and Surface Meteorological Variables in the Columbia River750

Gorge and Basin During the Second Wind Forecast Improvement Project. Boundary-Layer Me-751

teorology, 182 (1), 147–172, https://doi.org/10.1007/s10546-021-00645-x.752

Bingöl, F., J. Mann, and G. C. Larsen, 2010: Light detection and ranging measurements of wake753

dynamics part i: one-dimensional scanning. Wind Energy: An International Journal for Progress754

and Applications in Wind Power Conversion Technology, 13 (1), 51–61.755

Bortolotti, P., H. C. Tarres, K. Dykes, K. Merz, L. Sethuraman, D. Verelst, and F. Zahle, 2019:756

Iea wind task 37 on systems engineering in wind energy – wp2.1 reference wind turbines. Tech.757

36



rep., NREL/TP-73492, International Energy Agency. URL https://www.nrel.gov/docs/fy19osti/758

73492.pdf.759

Brewer, M. C., and C. F. Mass, 2016: Projected changes in western us large-scale summer synoptic760

circulations and variability in cmip5 models. Journal of Climate, 29 (16), 5965–5978.761

Brewer, M. C., C. F. Mass, and B. E. Potter, 2012: The west coast thermal trough: Climatology762

and synoptic evolution. Monthly Weather Review, 140 (12), 3820–3843.763
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